TECHNICAL PROGRAM As of 3/7/18 - Subject to change – please check the conference website for updates. | Monday
11 June 2018 | | | |------------------------|---|--| | 9:00-10:30 | Forest Products Laboratory Tour #1 | | | 9:00 – 12:00 | Practical Safety Strategies for Bio/Nano Technology Commercialization Workshop | | | 12:00-1:30 | Student Committee Lunch | | | 1:00 - 4:00 | CNM Characterization Workshop – Primary Characterization | | | 2:00-3:30 | Forest Products Laboratory Tour #2 | | | 4:00-5:30 | Session 1: OPENING SESSION AND KEYNOTE Keynote Speaker: Alper Kiziltas, Ph.D. Ford Motor Company Welcome & Nano Division Overview | | | 5:30-7:00 | Welcome Reception
5:30-7:00 | | | 6:30-7:30 | Young Professionals Mixer
6:30-7:30 | | | | Tuesday
12 June 2018 | | | | |-----------------|--|--|---|--| | | Session 2: Particle Size
Measurement | Session 3: Lignin
Specialties | Session 4: Responsive & Functional Materials I | | | | Proof-of-Concept of Gel
Fractionation of Bleached
Eucalyptus Kraft MFC - <i>Braz</i>
<i>Demuner, Fibria Cellulose</i> | Bio-nanomaterials Development: Linking R&D Activities and Industrialization Of Lignin Micro - and Nanoparticles - Camilla Abbati de Assis, North Carolina State University | Cellulose Nanomaterial in High
Performance Water-based
Drilling Fluids - Qinglin Wu,
Louisiana State University | | | 8:30-
10:00 | Determining Nanocellulose Particle Size — A Comparative Study - Valdeir Arantes, Lorena School of Engineering, University of São Paulo | Exploring the Interactions That Drive the Assembly of Cellulose Nanofibers Produced from Australian Spinifex Arid Grass - Katarzyna Kemp, University of Queensland, Australian Institute for Bioengineering and Nanotechnology | Encapsulation of Phase Change Materials in Cellulose Nanocrystals-Reinforced Poly(urea-urethane) Microcapsules and Their Incorporation in Asphalt for Snow and Ice Melting - Carlos Martinez, Purdue University | | | | Characterization Of Concentrated Aqueous CNC Suspensions By Static Multiple Light Scattering: Equivalent Particle Size And Suspension Stability – Zygmunt Jakubek, National Research Council of Canada | Valorizing Lignin through Lignin nanoparticles Fabrication and Application - Dong Tian, Sichuan Agricultural University | Sensing Water Diffusion and its Effects in CNC-epoxy Composites Using Aquafluor - Sindhu Seethamraju, National Institute of Standards and Technology | | | | Metrology Challenges for
Characterization of Cellulose
Nanocrystals – <i>Linda</i>
<i>Johnston, National Research</i>
<i>Council Canada</i> | Anisotropic Cellulose
Nanofibers/Lignin Foams For
Thermal Insulation - <i>Nathalie</i>
Lavoine , Stockholm University | Unusual Approaches to Ccellulose Nanocrystal Modification: Allomorph Transition and End-to-end Connections - Eero Kontturi, Aalto University | | | 10:00-
10:30 | | Break | | | | 40.53 | Session 5: Photonics and
Optical Applications | Session 6: Industrial
Applications | Session 7: Foams & Gels | | | 10:30-
12:00 | Circularly Polarized Light Detection on Transistors using Cellulose Photonic Dielectrics - Luis Pereira, CENIMAT/I3N and CEMOP/UNINOVA | Towards Enhanced Durability
And Sustainable Construction
Through Tuned Cellulose
Nanofibres - <i>Vivek</i> | Towards Nano-enabled Bio-
Based Solutions by Foam
Technologies - Katariina
Torvinen, VTT Technical
Research Centre of Finland Ltd. | | | | | Bindiganavile, Univeristy of
Alberts | | |-----------------|--|--|---| | | Thermoresponsive Liquid Crystal Templating of Semiconducting Polymers using Cellulose Nanocrystals - Bailey Risteen, Georgia Institute of Technology | Cellulose Filament Reinforced
Cement Board - Xiaolin Cai,
FPInnovations | Ultralight Weight Kapok Fiber
Derived Aerogels for Oil Spill
Cleaning - Indu Chauhan,
Indian Institute of Technology
Delhi | | | UV-blocking Hybrid Nanocellulose Films Containing Ceria and Silica Nanoparticles - Tiffany Abitbol, RISE Research Institutes of Sweden | The Potential of TEMPO-
Oxidized Cellulose Nanofibrils
as a Rheology Modifier in Food
Systems - Ragnhild Aaen,
NTNU | Control of Porous Structure of
Cellulose Aerogel Made from
Nanofibrillated Cellulose –
Chen Gong, China National
Pulp and Paper Research
Institute | | | Electrophoretic Deposition of
CNC-Containing Photonic and
Semi-Conductive Films -
Wadood Hamad,
FPInnovations | Hygiene Product Application Utilizing Cellulose Based Absorbent Material Made By Tempo Oxidation - Jani Lehmonen, VTT Technical Research Centre of Finland Ltd | Plasticized Nanocellulose Gel
for Biomedical and Food
Packaging Applications - Suraj
Sharma, University of Georgia | | 12:00 -
2:00 | Session 8: Keynote Presentation and Lunch Keynote Speaker: | | | | 2.00 | | neynote speaker. | | | 2.00 | Session 9: Industrial
Production 1 | Session 10: Novel Properties of Nanocellulose-based Films and Membranes | Session 11: Tissue
Engineering and Implants | | 2.00 | | Session 10: Novel
Properties of
Nanocellulose-based Films | | | 2:00-3:30 | Production 1 Control of Membrane Processes During the Production of Cellulose Nanomaterials – Emily | Session 10: Novel Properties of Nanocellulose-based Films and Membranes Industry Adopted Production of Nanocellulosic Material Optimized for Increased Strength of Packaging and Printing Paper - Per Engstrand, | 3D Printing Of Nanocellulose
Scaffolds With Tailored
Mechanical Strength Towards
Medical Applications - <i>Xiaoju</i> | | | Cost Effective Production of
CNC at InnoTech Alberta -
Christophe Danumah,
InnoTech Alberta Inc. | Study of Structure Dependence Of Barrier Properties In Nanofibrilated Cellulose Films for Intelligent Food Packaging Applications - Vadim Kislitsin, University of Alberta | New Production Strategies for
Tissue Scaffolds Containing
Cellulose Nanocrystals and
Their Fate in Vivo – <i>Emily</i>
<i>Cranston, McMaster University</i> | | |----------------|--|--|---|--| | 3:30-4:00 | | Break | | | | | Session 12: End User Panel | Session 13: Tissue Engineerin
Delivery | ng, Implants and Drug | | | | | Shape-memory 3D Printable Hyd
Properties - Gilberto Siqueira, Ap
Empa | _ | | | 4:00-5:30 | Cellulose-Based Lateral Flow Devices for Low-Cost F Blood Coagulation Monitoring - Andrew Steckl, Univ Cincinnati | | | | | | | Facile Preparation of Lignin Nan
Aqueous Solution and Excellent
Liheng Chen, Jinan University | - | | | | | Vitamin B Complex Encapsulated
Model Study On Adsorption and
Diego Sánchez, Pontificia Bolival | Controlled Delivery System - | | | 5:30-7:30 | Session 15: Po | Session 15: Poster Session and Student Poster Competition | | | | | | Wednesday
13 June 2018 | | | | | Session 16: Automotive &
Other Manufacturing
Processing | Session 17: Processing and
Applications of
Nanocellulose-based
Coatings | Session 18: Responsive &
Functional Materials II | | | 8:30-
10:00 | Role of Nanocellulose in Glass
Fiber-Epoxy Interphase -
Joyanta Goswami, Georgia
Institute of Technology | Chitin and Cellulose Spray Coated Nanomaterials for Sustainable Barrier Applications - Chinmay Satam, Georgia Institute of Technology | Mechanical Behavior of Polymer Conjugated Cellulose Nanocrystal Films - Sinan Keten, Northwestern University | | | | High performance
nanocellulose – polyamides
composites - <i>Fabiola Vilaseca,</i>
<i>University of Girona</i> | Roll-to-roll Fabrication of
Transparent Cellulose
Nanocrystal Coatings on a
Flexible Substrate with | Development of Cellulose Fibre Yarns For Hormone Capture From Aqueous Matrices - Hannes Orelma, | | | | | Controlled Anisotropy Reaz
Howdhury, Purdue University | VTT Technical Research Centre
of Finland | |-----------------|---|---|---| | | Toward the Applications of
CNFs Materials for Automotive
Parts - Hiroyuki Yano, Kyoto
University | Coatability of CNC Suspensions
in a High-throughput
Continuous Process - Rajesh
Koppolu, Åbo Akademi
University | Solving the Problem of Making
Nanocomposites of
Hydrophilic and Hydrophobic
Polymers by Gas Switchable
CNC - Farhad Farnia,
Universite de Sherbrooke | | | Towards CNC-Enabled Lightweighting of Automotive Components - Craig Clemons, USDA Forest Products Laboratory | Comparison of Coating Methods for the Application of Cellulose Nanofibrils (CNF) as Coating on Paperboard - Doug Bousfield, University of Maine | Novel Tunable Amphiphilic to
Hydrophobic Nanocelluloses
Via a Multi-Functional Reagent
- You-Lo Hsieh, University of
California, Davis | | 10:00-
10:30 | | Break | | | | Session 19: Self- and
Directed Assembly of
Nanocellulose | Session 20: Melt & Dry
Processing I | Session 21: Foams &
Aerogels I | | | Confinement Driven
Organization of CNF and CNC -
Gustav Nyström, ETH Zurich | Cellulose Nanocrystal — Thermoplastic Composites via Melt-Blending — Douglas Fox, American University | Fabrication and Functionalization of Advanced Nanomaterials with 3D- Network Structure from Cellulose and Whole Biomass using LiBr Molten Salt Hydrate System - Yang Liao, UW Madison | | 10:30-
12:00 | Optimizing the Structure and Mechanical Properties of Chiral-Nematic Cellulose Scaffolds for Tough Bioinspired Polymer Composites - Bharath Natarajan, National Institute of Standards and Technology | Dual approach to Driving Crystallinity-Based Performance In Polylactic Acid Materials: Cellulose Nanomaterials Delivered By Polyethylene Glycol - Caitlyn Clarkson, Purdue University | Ultralight, Highly Thermal Insulating and Fire Resistant Aerogel by Encapsulating Cellulose Nanofiber with Twodimensional MoS ₂ - Hongli Zhu, Northeastern University | | | Nanocellulose Biofabrication:
A Versatile Toolbox for Self-
assembled Functional 3D
Structures - Orlando Rojas,
Aalto University | Embedding Cellulose
Nanocrystals (CNCs) into
Polymer Particles for
Enhanced Processing - Priya
Venkatraman, Virginia Tech | Characteristics of TEMPO-
oxidized cellulose
nanofiber/water dispersions
and their applications -
Yohsuke Goi, DKS Co. Ltd., the
University of Tokyo | | | Engineering the Self-assembly of Cellulose Nanocrystals on Complex Topography to Obtain Advanced Hybrid Materials - Blaise Tardy, Aalto University | Improving Compatibility and Compounding of Cellulose Nanocrystals in Polymer Composites – Ronald Sabo, USDA Forest Service, Forest Products Laboratory | Cellulose Nanofibrils Aerogel: Development and Application In Water Treatment - Feng Jiang, The Department of Wood Science, Faculty of Forestry, The University of British Columbia | | 12:00 -
2:00 | Session 22 - Lunch with Presentation by Conference Gold Sponsor | | | | | |-----------------|--|--|--|--|--| | | Session 23: Nanocellulose-
Based Composites | Session 24: Flexible
Electronics | Session 25: Nanocellulose
For Enhancing Paper | | | | | Controlling cellulose
nanocrystal location within
latex systems by tuning
interfacial compatibility - Elina
Niinivaara, McMaster
University | Cellulose Nanocrystals (CNC) Derived Mo ₂ C@Sulfur-doped Carbon Aerogels for Hydrogen Evolution - Yun Lu, Research Institute of Wood Industry, Chinese Academy of Forestry | The Benefits of Using MFC (Microfibillated Cellulose) in Coated Papers - David Cowles, GL&V USA Inc. | | | | 2:00-3:30 | Processing Effects on
Response of Mechanically
Adaptive Cellulose Nanocrystal
Polymer Composites - <i>Michael</i>
<i>Bortner, Virginia Tech</i> | Room Temperature Fabrication of High- Performance Nanopaper Thin- Film Transistors with Stacked IGZO/Al ₂ O ₃ Bilayer Semiconductors - Zhiqiang Fang, South China University of Technology | Enhancing Coating Holdout
with Cellulosic MicroFibrils -
Donna Johnson, University of
Maine Process Development
Center | | | | 2:00-3:30 | Singly Dispersed Gold Nanoshell-Bearing Cellulose Nanocrystals with Tailorable Plasmon Resonance - Nikolay Semenikhin, Georgia Institute of Technology | Launderable Conductive Fabrics with Nanocellulose Coating - Yunsang Kim, Mississippi State University | Life Cycle Assessment Of Packaging Containing Microfibrillated Cellulose From Spruce - Ellen Soldal, Ostfold Research | | | | | Surface Modifications of
Nanocellulose for Assembly of
a Stable Organogel Support for
Drug Crystallization - Manali
Banerjee, Georgia Institute of
Technology | AlGaN/GaN HEMT Based RF Power Amplifier on CNF Substrate for Environment- Friendly Flexible Electronics - Huilong Zang, University of Wisconsin-Madison | Nanocellulose Functionalization Using Silsesquioxane Particles Sol Gel Formation In Aqueous Conditions and Their Application for Superhydrophobic Coated Paper - Julien BRAS, Univ. grenoble Alpes, Grenoble INP, LGP2 | | | | 3:30-4:00 | | Break | | | | | 4:00-5:30 | Session 26: Processing and Properties of Nanocellulose-based Films for Packaging Applications Functional Nanofibril | Session 27: 3D Printing & Coatings 3D Printed Poly(Lactic- Acid)/ | Session 28: Characterization Methods Investigating the Influence of | | | | | Membranes and Strong Wet-
Spun CNF Fibers - Yulin Deng,
Georgia Institute of
Technology | Grafted Cellulose Nanofiber
Composites with Enhanced
Mechanical Properties – Ju
Dong, Louisiana State University | Fibril Size on Microfibrillated
Cellulose (MFC) Suspension
Morphology Under Flow: A
Rheological Approach - <i>Michel</i> | | | | | All-cellulosic Packaging From Cellulose Nanofibrils And Fatty Acid Esters - Jari Vartiainen, VTT Technical Research Centre of Finland Ltd. Hybrid Nanopaper of Cellulose Nanofibrils and PET Microfibers with High Tear Resistance – Emil Gustafsson, | Towards 3D printing of ABS -cellulose nanocrystal composite materials – Matthew Hartings, American University Improved Wood Coatings via CNC Addition - Jeffrey Youngblood, Purdue University | Schenker, FiberLean Technologies Ltd. Comparison of supramolecular structures of CNCs of different origins - Umesh Agarwal, USDA FS Forest Products Laboratory Chemically Labeling of Cellulose For Quantitative Tracking - Jeremiah Woodcock, NIST | |----------------|---|--|---| | | Université Grenoble Alpes,
LGP2 Structure-property Relationships In Physical, Mechanical, and Barrier Properties of Hybrid Cellulose Nanofibril/Bentonite Films For Packaging Applications - Mehdi Tajvidi, School of Forest Resources, University of Maine | Nanocellulose-modified Oil-
Based Wood Coatings - Stefan
Veigel, BOKU — University of
Natural Resources and Life
Sciences Vienna | Rheological Characterization
and Testing Standards for
Nanocellulose Materials -
Jianshan Liao, School of
Chemical and Biomolecular
Engineering, Renewable
Bioproducts Institute, Georgia
Institute of Technology | | 6:30-
10:00 | | Conference Dinner
6:30-10:00 | | | | Thursday
14 June 2018 | | | | | |----------------|--|--|--|--|--| | | Session 29: Safety in Applications | Session 30: Thermal
Properties | Session 31: Emulsions & Colloids | | | | 8:30-
10:00 | What Do We Know About the Safety of Cellulose Nanomaterials: Environmental Health and Safety Roadmap, knowledgebase and uncertainties - Jo Anne Shatkin, Vireo Advisors, LLC | Mass Production of Few-layer
Boron Nitride/Nanofibrillated
Cellulose Hybrid Membranes
With High Thermal
Conductivity Through One-
step Exfoliation and Dispersion
- Qingye Li, Polymer Research
Institute of Sichuan University | Medium and High Internal Phase Oil-in-Water Pickering Emulsions Stabilized by Cellulose Filaments - Chuanwei Miao, FPInnovations | | | | | Toxicological Evaluation of
Nanocellulose in Experimental
Models of Occupational
Respiratory Exposure - Jenny
Roberts, NIOSH | Modification of Cellulose
Nanocrystals (CNC) for Fire
Retardant Applications -
TriDung(TD) Ngo, InnoTech
Alberta | Surprising Adhesive Property
Modifications Using Cellulose
Nanocrystals - Marc Dube,
University of Ottawa | | | | | Comprehensive Physicochemical Characterization of Novel | Processing and Performance
of Clay-Nanocellulose Hybrids-
Lars Berglund, KTH Royal Inst | Tuned Multifunctional Cellulose Nanocrystal Acid- Base Cooperative | |-----------------|---|---|--| | | Cellulose Materials: Challenges and Opportunities for Environmental Health - Christie Sayes, Baylor University | of Technology | Organocatalysts For Upgrading
Biomass-Derived Platform
Molecules - Nathan Ellebracht,
Georgia Institute of
Technology | | | An Update on the Science of Demonstrating the Safety of Cellulose Nanomaterials for Food Related Uses - James Ede, Vireo Advisors, LLC | Retardation Effects of Cellulose Nanocrystals (CNCs) in Portland Cement Pastes - Francisco Montes, Purdue University | Rapid Stability Analyses of
Microfibrillated Cellulose -
Christelle Tisserand,
Formulaction | | 10:00-
10:30 | | Break | | | | Session 32: Industrial
Production II | Session 33: Solvent Based
Processing | Session 34: Foams &
Aerogels II | | | Mineral/microfibrillated Cellulose Composite Materials: High Performance Products, High Solids Product Forms and Applications - David Skuse, FiberLean Technologies Limited | Counterion Design Of TEMPO-
Nanocellulose Used as Filler to
Improve Properties of
Hydrogenated Acrylonitrile-
Butadiene Matrix - Akira
Isogai, The University of Tokyo | Open | | 10:30-
12:00 | Scaling up the CNC Production: Optimizing Cellulose Degradation with Gaseous HCl - Timo Pääkkönen, Aalto University | Effect of Cellulose Nanofibril Addition On Gel Spinning of Continuous Polyacrylonitrile Fiber, and Their Corresponding Properties - Jeffrey Luo, Georgia Institute of Technology | Nanocellulose aerogels and air
filters - Junji Nemoto,
Hokuetsu Kishu Paper | | | Improved Biochemical Co-
Production of Nanocellulose
and Biofuel Precursors with
Bacterial Cellulases - Peter
Ciesielski, NREL | Acrylic-CNC Composites Formed by CNC Functionalization with Acryloyl Isocyanate and In Situ Copolymerization- Carson Meredith, Georgia Institute of Technology | Reinforcing Effect of Poly-
Furfurylalcohol On Freeze-
Dried Microfibrillated
Cellulose Foams - Eva-Marieke
Lems, BOKU-University of
Natural Resources and Life
Sciences | | | Using Solid Organic Acids for
Sustainable, Economic, and
Tailored Production of
Cellulose Nanomaterials - J. Y.
Zhu, USDA Forest Products Lab | Nanocellulose in Formable,
Strong and Lightweight
Structures For Interior
Construction - Vesa Kunnari,
VTT Technical Research Centre
of Finland Ltd. | Tailoring the Interactions Between Aminosilane and Cellulose Nanofibrils for the Processing and Drying of Hybrid Siliceous Foams - Korneliya Gordeyeva, Stockholm University | | 12:00-
2:00 | Session | 35: Keynote Presentation and Keynote Speaker: | d Lunch | | | Session 36: Melt &
Dry Processing II | Manu | sion 37: LCA
facturing, Life
Product Safety | | 8: Films and on Properties | Session 39:
Student Session
Career
Roundtable | |-----------|---|---|---|---|--|--| | | Cellulose Nanocomposites: Vacuum Infusion of Cellulose Nanofiber Preforms with Bio-Based Epoxy - Kristiina Oksman, University of Oulu | Products:
Environm
Benefits u
Assessme | illated Cellulose in
Calculation of
ental Costs and
using Life Cycle
ant - Ingunn Saur
Ostfold Research | Measurement
And Cholesto | ive, Noncontact
nt Of Dielectric
eric Properties
- Jan Obrzut, | | | | Binderless Cellulose
Filament-Based Product
Made by Compression
Molding - Natalie Pagé,
FPInnovations | Ecotoxico
The Final
Effluent o
Fernando | Microfibrillated Cellulose Ecotoxicological Effects To The Final Treated Industrial Effluent of A Pulp Mill - Fernando Aquinoga Mello, Fibria Celulose S.A. | | Measurement of
se Films - <i>Karl</i>
, <i>RISE</i> | | | 2:00-3:30 | Cellulose Nanofibrils-
Bonded Particleboards:
Production, Property
Evaluation and
Dewatering Process
Assessment - Ezatollah
Amini, University of
Maine | Products According Commissi Heli Kang | Nanomaterials in - Risk Assessment g to European on's Guideline - as, VTT Technical Centre of Finland | Modified Cel
Nanocrystal
Routes for In
Performance
Suspensions
Temperature
Vanderfleet,
University | Production
acreased
e of Aqueous
at High
es - <i>Oriana</i> | | | | Enhancement of the
Physical And Mechanical
Properties of Mycelium-
Bonded Composite
Panels by Cellulose
Nanofibrils - Wenjing
Sun, University of Maine | Overview of NIOSH Field
Studies for the Assessment
and Control of
Nanocellulose Materials -
Kevin Dunn, NIOSH | | Department | s: Dried
rticle
and
in Aqueous
ussef Esparza,
of Civil and
tal Engineering | | | 3:30-4:00 | | | Brea | k | | | | 4:00-5:3 | () <u> </u> | Session 41: Cession 40: Energy Storage Characterization and Session 42: Applications Quantification of Cellulose Mate Nanomaterials | | | | | | Structure and Eectrochemical Performance of Cellulose Nanocrystal Derived Carbon Anodes for Lithium and Sodium Batteries - Kyungho Kim, Purdue University | Meeting Global Regulatory
Requirements: Overview of
Nanomaterial Safety Testing -
Kimberly Ong, Vireo Advisors | Fabrication and Characterization of All- Cellulose Composite Membrane for Simultaneous Oil/Water Separation and Water Purification - Chenghong Ao, State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University | |---|--|--| | Heavy Metal-Free Tannin from
Bark for Sustainable Energy
Storage – Hongu Zhu,
Northeastern University | Investigation into Low Level Quantification Techniques for Cellulose Nanocrystals (CNC) in Aqueous Media – Brian O'Connor, FPInnovations | Scalable Processes for
Nanocellulose Based Water
Purification Membranes - <i>Aji</i>
<i>Mathew, Stockholm University</i> | | Nanocrystalline Cellulose
Based Electroactive Polymer -
Maobing Tu, University of
Cincinnati, | The Effect of Pretreatment on
Key Properties of Cellulose
Nanofibers from Hybrid Aspen
- Simon Jonasson, Luleå
University of Technology | Effect of Surface Hydrophobicity to Antibacterial Activity Of Nanocellulose-Based Material with Quaternary Group - Shiyu Fu, South China University of Technology | | Flexible Supercapacitors from
Nanocellulose - Wei Zhang,
State Key Laboratory of
Polymer Materials
Engineering, Polymer Research
Institute at Sichuan University | Cellulose Nanocrystals from Flax Shives: Accessibility of the Hydroxyl Groups, Crystallite Shapes and Three-Dimensional Arrangement - Benoit Duchemin, Normandie Univ/CNRS | Preparation of Polypropylene Nanocomposites with Amphiphilic Janus ACC- Nanocellulose Created by Aqueous Counter Collision - Tetsuo Kondo, Kyushu University | | | Friday
15 June 2018 | |-------------|---| | 9:00 -12:00 | Producers Committee Meeting (Invitation Only) |